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Conformations of tethered chains in restricted spherical volumes with an increasing radius were stu-
died by Monte Carlo simulations. Simulations were performed on a tetrahedral lattice at relatively
high densities of the occupied lattice sites. A simultaneous self-avoiding walk of all tethered chains
creates the starting conformations of the multi-chain system which are futher equilibrated by a modi-
fied algorithm similar to that of Siepmann and Frenkel. In this paper, only a geometric excluded
volume effect of segments is considered. Selectively chosen series of data for changing numbers of
chains, N, their lengths, L, and radii of the sphere, R, give information on the system behavior under
various conditions. In this part of our systematic study of tethered chains in constrained volumes, we
present angular distribution functions of the end-to-end, end-to-gravity center distances, etc. for sys-
tem studied in previous paper. The second class of studied conformational characteristics are the dis-
tributions of projections of the end-to-end vectors into the selected directions (i.e. the radial direction
and the direction of the first-to-second polymer segment connection).

Block copolymers AB, or ABA form in dilute solutions in selective solvents (a good
solvent for block A, and a non-solvent for B) multimolecular micelles1,2. Polymeric
micelles are reversible spherical associates, fairly monodisperse in mass and size. A
typical micelle contains several tens to a few hundreds of copolymer chains and is quite
small for its high molar mass. It consists of a compact spherical core formed by inso-
luble blocks (the average segment density 0.7 – 0.8 g cm−3) and a diffuse protective
outer shell formed by soluble blocks (segment density ca 0.15 – 0.25 g cm−3). Micelli-
zation process resembles in many respects that of soaps and detergents and obeys a
model of a closed association3: Monodisperse micelles are in a reversible equilibrium
with a certain concentration of non-micellized copolymer (unimer) and the association
number, n, depends on the thermodynamic conditions, but not on the total copolymer
concentration. In some systems (e.g. amphiphilic block copolymers in aqueous media)
the equilibrium is kinetically frozen and the behavior of the system may differ consid-
erably from the above outlined scheme4 – 7.
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Equilibrium properties of micellizing systems depend both on the state of the core
and the shell. In a simple reversible system without any specific interactions, thermo-
dynamics of the core is supposed to play a decisive role in micellization processes in
the whole system8 – 12. Several thermodynamic theories have been developed for the
description of the micellization equilibrium8 – 15. All of them had to use rather cruel
approximations for various contributions to the Gibbs free energy of the equilibrium
system (describing the core, core/shell interface, or shell behavior) and the agreement
with existing experimental data in a broad range of experimental conditions is only
qualitative.

Great improvements in the understanding of multi-chain systems behavior at elev-
ated segment densities, or in restricted geometries have been achieved in the last few
years by computer simulations16 – 20. Quite recently, Mattice et al.21 – 25 were able to
simulate a spontaneous micellization of short AB and ABA copolymer chains on a
simple cubic lattice without any limiting assumptions on the system behavior. The
authors did not study structural details of chain arrangements in micelles since the
studied chains were too short.

Conformations of chains tethered to flat, or curved convex surfaces have been stu-
died by several authors18 – 20. Behavior of dense multi-chain systems in small closed
volumes is a less investigated topic despite its enormous theoretical and practical im-
portance. In the two preceding papers of this series26,27 we have presented the first
simulated data on the chain conformations in small spherical volumes. In this paper we
present the angular distributions of chain orientations (e.g. the angular distribution of
the tethered end-to-the free end orientations with respect to the radial direction, etc.) for
systems which had been studied in previous paper (i.e. for systems that realistically
mimic swollen cores of polymeric micelles).

Analogically to our previous studies, only the geometrical excluded volume effect
has been taken into consideration. Behavior of systems with the trans/gauche isomeric
states potential and the non-bonding interaction potential is a subject of the ongoing
studies. Nevertheless, in the absence of very strong specific interactions, structural
properties of dense and constrained systems on a tetrahedral lattice are controlled
mainly by the excluded volume effect.

METHOD

The Simulation Procedure

Simulation procedure used in this paper is the same as in our previous studies26,27: It
consists of: (i) a simultaneous self-avoiding walk of all chains tethered to the surface
inside the spherical volume, and (ii) an equilibration algorithm similar to that of
Frenkel and Siepmann16. Randomly chosen chains are disregarded one by one and they
grow again in the dense multi-chain system. The acceptance of a newly grown chain is
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subjected to a modified Metropolis criterion28 for the Rosenbluth weights29 of the new
and the old chain conformations, Wnew/Wold. Only the geometrical excluded volume
effect is considered. All details of the simulation procedure have been described in
previous parts of this series26,27. Individual distributions are based on 104 successfully
created and statistically non-correlated multi-chain system configurations (i.e. 108 – 109

generations of segment positions). Simulations were performed on a DEC 5000/200
computer using an original program in FORTRAN 77. The longest simulations took up
to two weeks of the CPU.

Calculated Distribution Functions

The following distribution functions are presented in this communication:
a) The angular distribution of directions of the tethered end-to-the free chain end

with respect to the radial direction, ΨTF
(r)(ϑ ). This function is constructed as a histogram

during simulations of individual multi-chain configurations (see ref.26). Its values are
normalized by numbers of all lattice sites in volume elements confined between two
cones with the common apex at the surface (an inner cone with the angle ϑ , and the
outer with ϑ  + ∆ϑ , ∆ϑ  = 5°) – see Fig. 1a. Those normalization numbers are averaged
over all lattice sites in the surface layer of the thickness ∆ = 0.1 l (the possible apex
locations). Function ΨTF

(r)(ϑ ) is a mean angular distribution function, averaged over all
possible end-to-end distances, rTF (it depends on ϑ , but not on rTF). The correlated
distribution functions, PTF

(r)(rTF,ϑ ), as functions of both the distances rTF and orientation-
s ϑ  with respect to the radial direction will be presented in our next publication30. A
similar function to ΨTF

(r)(ϑ ) is the angular distribution of the tethered end-to-the center
of gravity orientation with respect to the radial direction, ΨTC

(r) (ϑ ).
Three other angular functions (with respect to the radial direction) were calculated in

the course of computer simulations: The average number fraction of chains with certain
end-to-end, or end-to-center of gravity orientations, nTF

(r)(ϑ ), nTC
(r) (ϑ), and nFC

(r) (ϑ ), respec-
tively. The first and the second functions are recalculable from corresponding nor-
malized functions, ΨTF

(r)(ϑ) and  ΨTC
(r) (ϑ ), nevertheless the possibility to compare both

types of curves helps to the reader to assess the significance of an orientation effect of
the external constraints. In the last case, the “normalization cones” depend on positions
of free ends and the centers of gravity of individual chains in the sphere and the physi-
cal significance of the normalization procedure is not clear. It is the reason why we
present only the function nFC

(r) (ϑ ).
b) Angular distribution functions with respect to the direction of the first-the second

segment connection (characterized by an angle ϕ): The number fraction of chains as a
function of orientations of the end-to-end vectors, nTF

(12)(ϕ), see Fig. 1b.
Further calculated functions are distributions (number fractions) of projections of the

end-to-end, or end-to-the center of gravity distances into:
c) the radial direction, fTF

(r)  (pTF
(r)  ) , fTC

(r)  (pTC
(r)  )  and  fFC

(r)  (pFC
(r)  ) respectively, or
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d) into the direction of the first-the second segment connection, fTF
(12) (pTF

(12) ) (see
Fig. 2).

RESULTS AND DISCUSSION

Orientational Distribution Functions with Respect to the Radial Direction

Figure 3 shows the normalized angular distribution function of orientations of end-to-
end distances with respect to the radial direction, ΨTF

(r)(J), for multi-chain systems (mod-

FIG. 2
A schematic two-dimensional representation of the
evaluation of projections of the end-to-end connec-
tion into the radial direction, pTF

(r) , and into the direc-
tion of the first-to-second segment connection, pTF

(12)

FIG. 1
A schematic two-dimensional representation of the evaluation of: a angular distribution function with
respect to the radial direction, ΨTF

(r)(J); b an analogical function with respect to the direction of the
first-to-second segment connection, ΨTF

(12)(j); the real angular intervals used in calculations are: ∆ϑ = 5°,
∆ϕ = 5°
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elling moderately swollen micellar cores) for three radii of the sphere, R = 10 l, 12.5 l
and 15 l (l is the lattice distance), a constant average segment density <gS> = (N
L/Ntot) = 0.52, and various numbers N and L, N ∈  <15, 86>, L ∈  <33, 163>.

General shape of all curves is basically the same with a relatively broad and deep
minimum in the region ϑ  = 0 to 45° and a pronounced maximum around ϑ  = 65 to 70°.
At higher angles, the curves drop again and their values close to ϑ  = 90° correspond
roughly to those for ϑ  = 0°. Shapes with well-pronounced maxima are typical for small

FIG. 3
Angular distribution functions of orientations of the tethered-to-free end connections of individual
chains with respect to the radial direction in spherical micellar cores, ΨTF

(r)(J), for two constant seg-
ment densities: <gS> = 0.52 (a, b, c) and <gS> = 0.36 (d, e). Values of the other parameters: a: R = 10 l,
N/L = 45/31 (1), 35/40 (2), 25/56 (3) and 15/93 (4); b: R = 12.5 l, N/L = 68/40 (1), 53/52 (2), 38/72
(3) and 23/119 (4); c: R = 15 l, N/L = 86/55 (1), 67/71 (2), 48/99 (3) and 29/163 (4); d: a constant
number of chains, N = 21 and L = 47, R = 10 l (1), L = 92, R = 12.5 l (2) and L = 159, R = 15 l
(3); e: a constant chain length, L = 47 and N = 21, R = 10 l (1), N = 41, R = 12.5 l (2) and N= 71,
R = 15 l (3)

Insoluble Block Orientations 807

Collect. Czech. Chem. Commun. (Vol. 59) (1994)



spheres and high numbers of chains, N. In those cases, the maximum values are ca three
times higher than the values for ϑ  = 0°.

The shape of curves ΨTF
(r)(J) with highly pronounced maxima for angles differing

significantly from ϑ  = 0°, which suggest a high fraction of “oblique chain orientations”
in spherical cores, are slightly surprising. It is quite understandable that not all chain
free ends may be located in a small central region of the sphere. The higher is the
number of chains, the higher fraction of the free ends is forced to be placed outside the
central region. Functions ΨTF

(r)(J) are normalized by numbers of all lattice sites in direc-
tions defined by cones with angles ϑ  and (ϑ  + ∆ϑ) – see Fig. 1, and are therefore
corrected for the effect of the changing numbers of lattice sites for a possible location
of the chain free ends in individual conical layers. On the basis of pure geometric
considerations, one would expect rather broad and flat distributions of chain free end
orientations into all possible angles ϑ , <0, 90°>, without any token of a minimum close
to ϑ  = 0°. The surprising shape with the pronounced maximum for non-zero angles is
mainly a consequence of the general behavior of a single chain in a restricted volume30

(see the summarizing discussion concerning Figs 3 – 7).
Conclusions which may be drawn from the simulated angular distributions agree

with the indirect observations made in our previous papers26,27. On the basis of a com-
parison of the distribution of the end-to-end distances, ρTF(rTF), with the distribution of
the free end locations within the sphere, gF(r), we have suggested earlier that a nonne-
gligible fraction of chains decline appreciably from the radial direction.

Figure 3d shows three curves ΨTF
(r)(J) for a constant segment density, <gS> = 0.36, a

constant number of chains, N = 21, and increasing lengths of chains which is propor-
tional to R3. Numbers of lattice sites for a location of any segment in all ∆ϑ  intervals
increase with increasing R and it results in flat functions ΨTF

(r)(J) for the largest R = 15 l.
An interesting trend may be observed in Fig. 3e. The curves for chains of the same

length, L = 47, show slightly different angular orientations in volumes with the increas-
ing R. An evident shift in the maxima positions with the increasing R may be observed.
This confirms our earlier indirect conclusion which we had made in our previous study
on the basis of the comparison of the function ρTF(rTF), with the distribution of the free
end locations in the sphere, gF(r), for a constant L – see Figs 1e and 4e in ref.27.

Figure 4 gives a supplementary information on the number fraction of chains with
particularly oriented end-to-end connections, nTF

(r)(ϑ ). Functions ΨTF
(r)(J) and nTF

(r)(ϑ ) are
recalculable from each other on the basis of our calculation procedure, nevertheless it
would be very difficult for a reader to deduce the correct shape of the latter distribution
from the first one without other information. A relatively high maximum in the number
of chains is achieved for orientations between ϑ  = 30 – 50° for all systems. All curves
go almost to zero for ϑ  = 0° due to a very small number of lattice sites in a narrow cone
with the apex angle ∆ϑ  = 10°.
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Distribution functions of the tethered end-to-center of gravity orientations, ΨTC
(r) (J),

are shown in Fig. 5. All curves ΨTC
(r) (J) have a broad minimum for angles ϑ  = 0 – 25°.

Then they rise steeply and reach a sharp maximum around ϑ  = 45 – 55° and drop
suddenly to zero for angles ϑ  > 50 – 60°. Positions of the maximum, as well as the
position of the sudden drop depend sensitively on N, but they do not depend on L (see
Fig. 5d, e). The shape with a well-pronounced maximum is typical for systems with
small R and it does not nearly depend on the average segment density, <gS>. Position
of the maximum (the angle ϑm) increases with the increasing number of chains, N. It is
interesting to compare distribution functions, ΨTC

(r) (J), with corresponding functions,
ΨTF

(r)(J). Shapes of ΨTC
(r) (J) suggest a narrower angular distribution of the “tethered

halves” of chains in comparison with the “whole chain orientations”.

FIG. 4
Number fractions, nTF

(r)(ϑ), of chains with given end-to-end orientations corresponding to distribution
functions in Fig. 3
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Figure 6 shows the number fractions, nTC
(r) (ϑ ), of chains corresponding to functions

ΨTC
(r) (J). A significant maximum between 30 and 50° is attained for all systems. The

main difference between nTF
(r)(ϑ ) and nTC

(r) (ϑ ) consists in the fact that the latter falls fast
to zero for ϑ  = 70 – 90°.

The effect of R-dependent geometrical constrains on the angular distributions, ΨTF
(r)(J)

and ΨTC
(r) (J), is quite important as compared with distribution functions of distances,

ρTF(rTF), ρTC(rTC), etc. which were presented earlier26,27.
Figure 7 shows the number fractions of chains with given angular orientations of the

free end-to-center of gravity connections, nFC
(r) (ϑ ). For the physical and computational

reasons discussed in the methodological section, we present only nFC
(r) (ϑ ), and not the

function ΨFC
(r) (J). Simulated curves show broad distributions of the considered connec-

tions into all possible directions (in the whole angular range, ϑ  = 0 to 180°) with a

FIG. 5
Angular distribution function of the tethered end-to-the gravity center orientations with respect to the
radial direction, ΨTC

(r) (J), for the same systems as in Fig. 3
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significant maximum slightly below ϑ  = 90° which means that the highest fraction of
the free end-to-gravity center connections are oriented almost perpendicularly to the
radial direction.

It may be summarized on the basis of Figs 3 – 7 that the “tethered halves” of chains
are more affected by the strongly curved surface and are therefore more radially
oriented than the “free halves”. This result agrees with what may be expected for such
systems. An interesting effect, which is not easy to account for by simplified geometric
considerations, is demonstrated by an increased fraction of chains in the distribution
function, ΨTC

(r) (J), in a strikingly narrow angular range between 40 and 55° and almost
zero fractions, ΨTC

(r) (J) = 0, for ϑ  > 60°. This behavior may be traced upto very low
segment densities (it is evident even in a system consisting of one moderately long
tethered chain, i.e. L < 5 R/l, in otherwise empty spherical core). This is probably

FIG. 6
Number fractions, nTC

(r) (ϑ), of chains with given tethered end-to-the gravity center orientations corre-
sponding to distribution functions in Fig. 5
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caused by the maximum entropy principle in a very constrained volume (an optimum
utilization of the entire volume by moderately stiff chains) together with an orienta-
tional effect of the curved surface on the tethered part of a chain30.

Distributions of Various Projections into the Radial Direction

Figures 8 and 9 show the distribution functions of projections of the end-to-end dis-
tances and the tethered end-to-the center of gravity distances into the radial direction,
fTF
(r)  (pTF

(r)  ) and  fTC
(r)  (pTC

(r)  ), respectively. The shape and particularly the broadness of the
curves reflect to a high degree the flexibility of chains in the dense system under given
conditions (i.e. under given geometrical constraints) and the loss of memory concerning
the orientational effect of the strongly curved surface in the succession of segments
(from the tethered end upto the free end, or upto the gravity center). Distributions for

FIG. 7
Number fractions, nFC

(r) (ϑ ), of chains with given free end-to-the gravity center orientations
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shorter chains are much narrower than those for long chains and that indicates a consid-
erable orientational effect within the whole chain which is transmitted from segment to
segment due to a reduced flexibility of short chains in constrained systems. Curves in
Figs 8e and 9e confirm the interesting feature of the behavior of the studied systems
that we have found earlier26,27: The geometrical constraints, even though very import-
ant and predetermining to a great extent the general properties of the system, do not
change fast in the region of R ∈  <10 l, 15 l> and the functions describing properties of
individual chains at a constant average segment density, <gS>, depend mainly on the
chain length, L, (see also Figs 8d and 9d) and depend only little on N and R.

Figure 10 shows distribution functions of projections of the free end-to-the center of
gravity distances into the radial direction, fFC

(r)  (pFC
(r)  ). As concerns those projections, they

may be oriented both in the positive (central) and negative (centrifugal) directions.

FIG. 8
Distribution function of projections of the tethered end-to-free end distances into the radial direction,
fTF
(r)  (pTF

(r)  ), for the same systems as in Fig. 3
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Distributions fFC
(r)  (pFC

(r)  ) reach their maxima for positive values, pFC ca 2.5 l – 3 l, and their
shapes suggest that only a smaller fraction of “chain free halves” coil back to the sur-
face of the sphere. This behavior of “free halves” was found almost identical for all
studied systems.

Persistence Characteristics

To complete the characterization of the conformational behavior of individual chains in
constrained spherical volumes, we present angular distributions of chain end-to-end dis-
tances  with respect to the orientation of the first-to-second segment connection, nTF

(12)(ϕ),
and distributions of projections of the end-to-end distances into the direction of the
first-to-second segment connection, fTF

(12) (pTF
(12) ). These functions reflect to a certain de-

gree the “memory of the chain” concerning the direction of its very beginning and

FIG. 9
Distribution function of projections of the tethered end-to-the gravity center distances into the radial
direction, fTC

(r)  (pTC
(r)  ), for the same systems as in Fig. 3
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reflect thus the effective stifness of the chain under given conditions, nevertheless they
are not directly affected by the orientational effect of the curved surface.

Figure 11 shows the angular distribution functions (i.e. the number fractions),
nTF

(12)(ϕ). Curves for all systems are identical within the range of error of statistical
Monte Carlo simulations. Low values of nTF

(12)(ϕ) for ϕ → 0 are caused by a small
number of lattice sites in a cone with a small apex angle ∆ϕ = 10°. Maxima are reached
close to ϕ = 60°. Simulated curves are quite asymmetrical with pronounced tails for
higher angles ϕ, nevertheless the fractions of chains for ϕ > 135° are almost negligible.

Distribution functions of projections of the end-to-end distances into the direction of
the first-to-second segment connection, fTF

(12) (pTF
(12) ), are given in Fig. 12. Functions are

almost symmetrical with maximum at ca pTF
(12)= 6 l (this value is close to the average

value, <pTF
(12)>, i.e. to the persistence length). It is certainly interesting to compare dis-

FIG. 10
Distribution function of projections of the free end-to-the gravity center distances into the radial di-
rection, fFC

(r)  (pFC
(r)  ), for the same systems as in Fig. 3

Insoluble Block Orientations 815

Collect. Czech. Chem. Commun. (Vol. 59) (1994)



tribution function, fTF
(12) (pTF

(12) ), with the analogical function, fTF
(r)  (pTF

(r)  ). The latter func-
tion is defined only for positive values of pTF

(r) , is quite asymmetrical and the maximum
position depends significantly on the chain length, L. The first one is non-zero for
negative pTF

(12), and is almost symmetrical with respect to the maximum position which
does not nearly depend on L. We may conclude that a certain residual and slowly
decaying information on the orientation of the first-to-second segment connection is
carried out, conserved and “complied” throughout the full succession of segments in
the chain. We would like to stress that those persistence properties of individual chains
are affected by complicated behavior of the whole system and that they reflect the
effective stiffness of chains in severly constrained systems.

FIG. 11
Number fractions, nTF

(12)(ϕ), of chains with given end-to-end orientations with respect to the direction
of the first-to-second segment connection for the same systems as in Fig. 3
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CONCLUSIONS

a) Results of the performed Monte Carlo simulations presented in this paper broaden
the knowledge of the conformational behavior of tethered chains in constrained con-
cave volumes: The multi-chain system is fairly disordered and a significant fraction of
chains declines to a certain degree from the radial direction.

b) Distributions of the projections of the free end-to-the gravity center connections
into the radial direction, fFC

(r)  (pFC
(r)  ), suggest that a non-negligible fraction of chain “free

halves” are oriented back towards the surface of the sphere.
c) A great majority of conformational characteristics of individual tethered chains

depend only little on the average segment densities in the sphere. Some of them are
qualitatively the same for constrained multi-chain systems and for an “isolated” te-
thered chain submitted to identical constraints (i.e. in otherwise empty sphere). It may

FIG. 12
Distribution function of projections of the tethered end-to-free end distances into the direction of the
first-to-second segment connection, fTF

(12) (pTF
(12) ), for the same systems as in Fig. 3
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be deduced that in the region of the studied segment densities (upto ca 0.5), the inter-
chain conformational correlations play a less important role than it may be expected.

The authors are obliged to Prof. P. Munk from the University of Texas at Austin, U.S.A., for helpful
discussions and suggestions. The authors thank to the Ministry of Education of the Czech Republic for
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